WebAssembly Debugging with LLDB

Jonas Devlieghere
FOSDEM '26 LLVM Dev Room

History

Max Desiatov takes WasmKit is used
over maintainership in Cl for Swift 6.0
2022 2024
2018 2023 2025
Akio Yasui Yuta Saito joins and WebAssembly is officially
creates WasmKit WasmKit achieves 100% supported in Swift 6.2 and
(WAKit) SpecTlest coverage WasmKit ships with the toolchain

https://github.com/swiftlang https://github.com/swiftwasm https://swiftwasm.org

Goal

- First class debugging experience for Swift compiled to WebAssembly

- Source-level debugging (breakpoints, stepping, variables)

- Swift language support (e.g. Reflection Metadata)

- How?
- Teach WebAssembly tools about Swift
- Teach LLDB about WebAssembly

Approaches to Wasm Debugging

Wasmtime

Chrome Dev Tools

WAMR

Approaches to Wasm Debugging

Wasmtime

Codeis JIT'ed in runtime
LLDB debugs the runtime

Mature tooling can be
used unmodified

() Mixed runtime and user
code

Approaches to Wasm Debugging

Chrome Dev Tools

Fully browser based
Uses LLDB to parse DWARF

Seamless experience with
JavaScript

(1) Needs language support
In Chrome

Approaches to Wasm Debugging

WAMR

Provides GDB remote stub
that LLDB can connect to

Native LLDB experience

(1) Requires extensions in
LLDB

ac» &« > Q HelloSwiftWasm Chv s O 8 (O
@ RUN AND DEBUG [> Debug v o3 e 3 HelloSwiftWasm.swift X Xy & ()
Vv VARIABLES Sources > HelloSwiftWasm > 3 HelloSwiftWasm.swift > ...
Q 20 amain
19 struct HelloSwiftWasm {
18 static func addEntry(to dictionary: inout [String: String], key: String, value: String)
29 17 dictionarylkey] = value
16 }
& 15
14 static func main() {
0 13 var fruitPrices: [String: String] = [
' 12 "apple": "$1.50",
11 "banana": "$0.75",
Cé 10 "orange": "$2.00",
9]
A : 1
7 addEntry(to: &fruitPrices, key: "mango", value: "$3.50")
6 addEntry(to: &fruitPrices, key: "grape", value: "$2.25")
> WATCH >
T G 4 print(fruitPrices["apple"] 2?? "Not found")
3 print(fruitPrices["mango"] ?? "Not found")
2 }
1 }
21
I
v BREAKPOINTS
@ C++ Catch
@ C++ Throw
@ @ Objective-C Catch
@ Objective-C Throw
@ @ Swift Catch
@ Swift Throw |

X ®0ANO0 --NORMAL -- @ Ln21,Col1 Spaces:4 UTF-8 LF {} swift & 0

Architecture

GDB Remote Stub

LLDB Inferior

(e.g. debugserver)

GDB Remote ptrace

Protocol

Architecture

GDB Remote Stub

LLDB (e.g. debugserver) Inferior
GDB Remote . ptrace
Protocol
Wasm Runtime
LLDB GDB Remote Stub ———————————— Wasm inferior
GDB Remote : Implementation
Protocol defined

Existing WebAssembly Support

- Upstream
- Loading binaries

- Creating types from DWARF

- Downstream

- Patches in the WAMR repository

- Unmerged PRs from Paolo Severini

Object Files

- Replace ad-hoc section parsing in ObjectFi1leWasm

- Support standard (code, data) and custom sections (D\WARFE, Swift)

- Mini Wasm interpreter for init expression

https://github.com/llvm/llvm-project/pull/153634

Symbol Table

- Symbolication and breakpoints

- Function offset and size are stored in function section

- Function names encoded in the names section

https://github.com/llvm/llvm-project/pull/153093

Backtraces

- New ProcessWasm plugin

- No stack memory, registers or ABI (prior to Wasm EH)

- LLDB has to rely on the runtime for unwinding

- GDB remote extension: gWwasmCallStack

https://github.com/llvm/llvm-project/pull/150143

Variables

- Location descriptions in DWARF
- Empty: location unavailable
- Implicit: location unavailable but value is known (value)

-Memory: location in memory (address)

- Register: location in memory (register name)

Register Locations

- Wasm uses virtual registers in DWARF

- Globals (gwWasmGLlobal)

-Locals (gwWasmlLocal)

- Operand stack (gWasmStackValue)

https://github.com/llvm/llvm-project/pull/151010

Memory Locations

- Separate address spaces for code and memory

-wasm32: encoded in the top 32 bits of a 64-bit address

-wasmb4: unsupported (until we have address space support)

https://github.com/llvm/llvm-project/pull/150143

Swift Support

- Teach 11bSwiftReflection about Wasm

- Reflection metadata is generated by the compiler

- Consumed by the runtime & the debugger

- Stored in custom section: reimplement section parsing

https://github.com/swiftlang/swift/pull/83923

Platform Plugin

-New PlatformwWasm

- Automatically selected for targets with a WebAssembly triple
- Launches binaries under the runtime and connects to GDB stub

- Your choice of runtime, configurablein~/.11dbinit

First Class Debugging for WebAssembly

- Any language supported by LLDB
- Swift
-C, C++

- Any runtime implementing the protocol
- WebAssembly Micro Runtime (WAMR)
- WasmKit
- JavaScriptCore (WebKit)

What's next

- Extend the LLDB test suite

- Compile test binaries to WebAssembly
- Run and debug them under WasmKit
-Uncover bugs LLDB and GDB stubs

- Support more Swift language features

- Support address spaces for Wasmo64

